

**Turboflex** GC Series Flexible Disc Couplings Disc Couplings For Heavy Industrial Service



## Turboflex GC Flexible Disc Coupling

Ameridrives' reputation has been built on specialized designs for demanding applications since 1928. Bibby-Turboflex were the original developers of the Profiled Disc Coupling principle over 40 years ago and have been a global leader in high-performance couplings ever since.

Ameridrives-Bibby has combined over 40 years of engineering and sales experience in general purpose disc couplings with Turboflex design technology to create the GC series couplings. These conservative designs have been optimized for heavy industrial applications including reciprocating and reversing equipment in low to medium speed ranges. They are ideal for engine driven equipment. Our engineering team has combined testing and FEA analysis of the GC Series vs. competitive products to pinpoint the torsional characteristics of our couplings, in order to assure accurate data for your system dynamics analysis. We are prepared to work directly with your engineers to design and produce modified and special couplings. Ameridrives-Bibby is committed to providing expedited delivery, when required, to keep your project on schedule.

### **Standard Features:**

- Capacities to 1900 HP/100 RPM
- · Unitized flex packs for ease of installation
- Straight-sided carbon steel flex packs
- Large diameter high strength bolts for added torque transmission

### Advantages:

- Fewer coupling sizes lower inventory cost and better spares availability
- More torque per size means lower cost per HP
- Unitized flex pack simplifies installation no loose blades or washers
- Straight-sided flex pack results in better stress distribution and reduces production cost
- Unitized flex pack prevents blades from wearing into the bolt, which reduces galling and freezing of bolts in holes for easier maintenance

### **Recommended Bore Tolerances**

- Recommended standard bore tolerances for interference fit are shown in Table A.
- Bore tolerances conform to AGMA 9002-B04 standards.

**Interference Fits** Bores will be furnished with an interference fit and standard keyway. For **Keyless Shafts** consult factory for bore tolerance.

When **shaft sizes only** are stated on order and they consist of fractional or decimal dimensions without tolerance, the bore will be sized for an interference fit in accordance with Table A. If **exact shaft size** and tolerance do not agree with tables, the largest shaft dimension will be considered "basic" and the standard negative bore tolerance will be applied.

**Clearance Fits** are not recommended for GC series couplings, and will only be supplied on request, after review by Ameridrives engineering.

|                 |         | TABLE A          | - INTERFER         | ENCE FIT (INCH    | ES)                   |
|-----------------|---------|------------------|--------------------|-------------------|-----------------------|
| Nominal<br>Over | Bo<br>/ | re Range<br>Thru | Shaft<br>Tolerance | Bore<br>Tolerance | Interference<br>Range |
| 0.0000          | /       | 1.5000           | +.0000<br>0005     | 0005 /0010        | 0000 /0010            |
| 1.5000          | /       | 3.0000           |                    | 0010 /0020        | 0000 /0020            |
| 3.0000          | /       | 4.0000           |                    | 0015 /0030        | 0005 /0030            |
| 4.0000          | /       | 5.0000           |                    | 0020 /0035        | 0010 /0035            |
| 5.0000          | /       | 7.0000           | +.0000             | 0025 /0040        | 0015 /0040            |
| 7.0000          | /       | 8.0000           | 0010               | 0030 /0050        | 0020 /0050            |
| 8.0000          | /       | 9.0000           |                    | 0035 /0055        | 0025 /0055            |
| 9.0000          | /       | 10.0000          |                    | 0040 /0060        | 0030 /0060            |











The Turboflex flex pack and washers are supplied as a unitized set. This eliminates handling loose blades and the risk of dropping or losing element washers.

| S      | STAN | IDARD RI | ECOMMEN | DED KEYW         | AYS               |
|--------|------|----------|---------|------------------|-------------------|
| Nomina | l Bo | re Range | K       | eyway (Inch      | es)               |
| Over   |      | Thru     | Width   | Depth<br>Sq. Key | Depth<br>Red. Key |
| .312   | /    | .438     | .094    | .047             | —                 |
| .438   | /    | .562     | .125    | .063             | .047              |
| .562   | /    | .875     | .188    | .094             | .062              |
| .875   | /    | 1.250    | .250    | .125             | .094              |
| 1.250  | /    | 1.375    | .312    | .156             | .125              |
| 1.375  | /    | 1.750    | .375    | .188             | .125              |
| 1.750  | /    | 2.250    | .500    | .250             | .188              |
| 2.250  | /    | 2.750    | .625    | .313             | .219              |
| 2.750  | /    | 3.250    | .750    | .375             | .250              |
| 3.250  | /    | 3.750    | .875    | .438             | .313              |
| 3.750  | /    | 4.500    | 1.000   | .500             | .375              |
| 4.500  | /    | 5.500    | 1.250   | .625             | .438              |
| 5.500  | /    | 6.500    | 1.500   | .750             | .500              |
| 6.500  | /    | 7.500    | 1.750   | .875             | .750              |
| 7.500  | /    | 9.000    | 2.000   | 1.000            | .750              |
| 9.000  | /    | 11.000   | 2.500   | 1.250            | .875              |

| Coup              | ling Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on                                                          |                                                                    |                                                                |                                                                                 |                                                           |                                                                          |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Step 1.           | Select correct Select Correct Select Correct Select | ervice Factor from omponent S.F. +                          | n Service Factor T<br>Driver S.F.                                  | Table or Load Cla                                              | assification Graph                                                              | S                                                         |                                                                          |  |  |  |  |  |
| Step 2.           | Determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Selection Torc                                              | ue (Ib-in)                                                         | or                                                             | HP/100 RPI                                                                      | N                                                         |                                                                          |  |  |  |  |  |
|                   | Calastian Tar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HP x 630                                                    | 025 x S.F.                                                         | ·                                                              |                                                                                 | HP x 100 x S.F.                                           |                                                                          |  |  |  |  |  |
|                   | RPM (ID-IN) HP/100 RPM = RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                    |                                                                |                                                                                 |                                                           |                                                                          |  |  |  |  |  |
| Step 3.           | Select a coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g with a Rated To                                           | rque that is equal                                                 | I to or greater that                                           | n the Selection To                                                              | orque.                                                    |                                                                          |  |  |  |  |  |
| Step 4.           | Verify that coupl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing Max Bore is la                                          | arger than or equa                                                 | al to the required                                             | bore size.                                                                      |                                                           |                                                                          |  |  |  |  |  |
| Step 5.           | Step 5. Verify that the coupling Distance Between Shaft Ends (DBSE) will fit the application shaft spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                    |                                                                |                                                                                 |                                                           |                                                                          |  |  |  |  |  |
| Step 6.           | Verify that know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n peak torques ar                                           | e less than coupli                                                 | ing peak overload                                              | I rating.                                                                       |                                                           |                                                                          |  |  |  |  |  |
| Service<br>Engine | e factors may be g<br>ering for Heavy to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logenerally determine<br>Extremely Heavy                    | OAD CLASS<br>ned from the load<br>/ load conditions                | IFICATION C                                                    | GRAPHS<br>phs shown below                                                       | . Consult Amerid                                          | rives Application                                                        |  |  |  |  |  |
| CLASS             | SMOOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STEADY                                                      | MODERATE                                                           | MEDIUM                                                         | HEAVY                                                                           | EXTRA HEAVY                                               | EXTREMELY HEAVY                                                          |  |  |  |  |  |
| DRIVER<br>TYPE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                    |                                                                | HIGH<br>STARTING<br>TORQUE<br>MOTOR OR<br>ENGINE                                |                                                           | engine H                                                                 |  |  |  |  |  |
| LOAD<br>TYPE      | - SOFT START WITH<br>STEADY LOAD<br>- CENTRIFUGAL<br>EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - NORMAL STARTING<br>LOADS<br>- SLIGHT TORQUE<br>VARIATIONS | - ABOVE AVERAGE<br>STARTING LOADS<br>- MODERATE LOAD<br>VARIATIONS | - HIGH STARTING TORQUE<br>- MEDIUM TO HEAVY LOAD<br>VARIATIONS | - MILD SHOCK LOADING<br>ENGINES WITH SMOOTH<br>LOADING<br>- EXTREME RELIABILITY | - HEAVY SHOCK LOADING<br>- LIGHT TO MODERATE<br>REVERSING | - EXTREME SHOCK<br>LOADING<br>- HEAVY REVERSING WIDE<br>TORQUE VARIATION |  |  |  |  |  |
| SERVICE<br>FACTOR | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                         | 2.0                                                                | 2.5                                                            | 3.0                                                                             | 3.25                                                      | 4.0                                                                      |  |  |  |  |  |

# SERVICE FACTOR TABLE

The indicated service factors in the table below assume a smooth driver, such as electric motor or turbine drive. Add the driver service factor adders for other types of drivers, to the driven component service factor.

| DRIVEN COMPONENT                | S.F. | DRIVEN COMPONENT                  | S.F. | DRIVEN COMPONENT                  | S.F. |
|---------------------------------|------|-----------------------------------|------|-----------------------------------|------|
| AGITATORS                       |      | Slicers                           | 1.75 | Felt Whipper                      | 2.00 |
| Pure Liquids                    | 1.00 | Bottling                          | 1.50 | Presses                           | 2.00 |
| Liquids and Solids              | 1.25 | GENERATORS                        |      | Reel                              | 1.50 |
| Liquids-Variable Density        | 1.25 | Non-Welding                       | 1.50 | Stock Chests                      | 1.50 |
| BLOWERS                         |      | Welding                           | 3.00 | Suction Roll                      | 1.75 |
| Centrifugal                     | 1.00 | LUMBER INDUSTRY                   |      | Washers & Thickeners              | 1.50 |
| Lobe                            | 1.50 | Barkers-Drum Type                 | 2.00 | Winders                           | 1.50 |
| Vane                            | 1.25 | Edger Feed                        | 2.00 | PRINTING PRESSES                  | 1.50 |
| COMPRESSORS                     |      | Live Rolls                        | 2.00 | PUMPS                             |      |
| Centrifugal                     | 1.25 | Log Haul                          | 2.00 | Centrifugal                       |      |
| Lobe, Vane, Screw               | 1.50 | Off Bearing Rolls                 | 2.00 | General Duty (Liquids)            | 1.00 |
| Reciprocating                   | CF   | Planers                           | 1.75 | Boiler Feed                       | 1.50 |
| CONVEYORS - Uniformly Loaded or | 1.50 | Slab Conveyor                     | 1.50 | Slurry                            | 1.50 |
| Fed                             |      | Sorting Table                     | 1.50 | Dredge                            | 2.00 |
| CONVEYORS - Non-Uniform Load,   | 2.50 | Trimmer Feed                      | 1.75 | Reciprocating                     |      |
| Heavy Duty                      |      | METAL MILLS                       |      | Double Acting                     | 2.00 |
| CRANES AND HOISTS               |      | Draw Bench                        | 2.50 | Single Acting 1-2 Cylinders       | 2.25 |
| Main Crane                      | 2.00 | Forming Machines                  | 2.50 | Single Acting 3 or more cylinders | 1.75 |
| Reversing                       | 2.00 | Slitters                          | 2.50 | Rotary-Gear, Lobe, Vane           | 1.50 |
| Skip Hoist                      | 1.75 | Table Conveyors - Non-Reversing   | 2.50 | DRIVER                            | ADD  |
| Trolley Drive                   | 1.75 | Table Conveyors - Reversing       | 3.00 |                                   | 0.0  |
| Bridge Drive                    | 1.75 | Wire Drawing & Flattening Machine | 2.00 |                                   | 0.0  |
| Slope                           | 1.50 | Wire Winding Machine              | 2.00 | With Soft Start                   | 0.0  |
| DREDGES                         | 1.75 | PAPER MILLS                       |      |                                   | 0.0  |
| ELEVATORS                       |      | Beater & Pulper                   | 1.75 |                                   | 1.0  |
| Bucket                          | 1.75 | Bleacher                          | 1.00 |                                   | 1.0  |
| Centrifugal Discharge           | 1.50 | Calendars                         | 2.00 | Shunt Type                        | 0.0  |
| Freight                         | 2.00 | Converting Machines               | 1.50 | Series or Compound                | 1.0  |
| Gravity Discharge               | 1.50 | Couch                             | 1.75 |                                   | 1.0  |
| FOOD INDUSTRY                   |      | Cutters, Platers                  | 2.00 | 8 or more Cylinders               | 10   |
| Cereal Cookers                  | 1.25 | Cylinders                         | 1.75 |                                   | 1.0  |
| Dough Mixer                     | 1.75 | Dryers                            | 1.75 | 1-3 Cylinders                     | 2.0  |
| Meat Grinder                    | 1.75 | Felt Stretcher                    | 1.50 |                                   | 2.0  |



# **GCH Series Coupling**

Shaft to Shaft Connections



MAX BORE

(mm)

100

120

190

220

280

(lb-in)

40,000

120,000

240,000

PEAK

OVERLOAD

(lb-in)

60,000

180,000

360,000

840,000

1,650,000

(in)

3.75

4.50

6.88

8.00

10.00

HP PER

100 RPM

64

190

380

RATED TORQUE

The GCH coupling is ideal for low to medium speed equipment requiring shaft-to-shaft connection. Several spacer lengths are stocked to meet a variety of industry standard equipment spacings. Standard steel hubs are suitable for use on keyless shafts. Hubs are available in a variety of configurations to mate to straight or tapered shaft equipment. Special flange mountings are also available.

Our engineers commonly work with torsional analysts and design engineers to customize couplings to meet special system requirements. Special stiffness spacers, high-inertia hubs and flywheels are common modifications. We will work with you through the design and production of modified couplings for your special projects.

## •Carbon Steel Flex Packs Standard

•Unitized Flex Packs for Ease of Assembly

Steel Hubs Standard

Special Lengths to Match Compressor

•Flange Mounts

Taper Bores

•Cast Spacers

Modified Designs Available

•Flywheel/ Inertia Hubs •Tuned Stiffness

**DIMENSIONS (INCHES)** Α в С D G L 4.14 9.89 8.38 2.88 5.44 .57 4.71 10.46 14.07 5.57 11.00 4.25 6.51 6.07 0.75 14.57 7.19 15.69 7.45 19.95 0.98 15.00 6.25 9.57 8.45 20.95 9.63 24.13 18.00 7.25 11.63 1.32 10.70 25.20 11.39 29.39 22.00 9.00 14.50 12.39 1.56 30.39

13.89

WR<sup>2</sup>

(1)

(lb-in<sup>2</sup>)

344

349

1,373

1,387

1,418

7,157

7,277

19,551

19,832

54,405 55,046

61,098

WEIGHT

(1)

(lb)

43

44

106

108

112

278

284

529

540

965

981

1,016

MAX

RPM

3,400

2,500

1,800

1,500

1,200



Turboflex GCH560 shown with integral 34.3" OD flywheel for electric motor to reciprocating compressor application.

### NOTES:

31.89

AXIAL

FLOAT

+/- in

0.06

0.08

0.10

0.12

0.14

 Weight and WR<sup>2</sup> are calculated with hubs at maximum bore size.

2) Consult factory for torsional stiffness and alternating torque limits.

### ORDERING INFORMATION:

1) Specify coupling size and spacer option. Example: GCH240-60

 Specify hub bore size and tolerance, keyway size or keyless, special hub length, etc. Please specify for each hub.

|      | 00 |       |           |
|------|----|-------|-----------|
| 560  | 70 | 000   | 560.000   |
| 500  | 75 | 009   | 560,000   |
|      | 80 |       |           |
| 1100 | 85 | 1,746 | 1,100,000 |
|      | 92 |       |           |
|      |    |       |           |

SIZE

40

120

240

560

1100

SIZE

40

120

240

SPACER

31

35

42

45

50

55

60 70

75

80

85

92

SPACER

31

35

42

45

50

55

60



# **GCF Series Coupling**

Flywheel to Shaft Connections



The GCF coupling has been optimized for use with engine driven reciprocating compressors. Five basic coupling sizes cover the full range of applications for lower spare parts costs and better availability. Spacer lengths are offered to match industry standard equipment spacings. Standard steel hubs are suitable for use on keyless shafts. Hubs are available in a variety of configurations to mate to straight or tapered shaft equipment. Special flange mountings are also available.

If your system requires a modified coupling, our engineers will work with torsional analysts and design engineers to customize a coupling to meet your exact needs. In most cases we can design and produce a special coupling to meet your production schedule.

•Fits Compressor Industry Standard Spacing Carbon Steel Flex Packs Standard •Unitized Flex Packs for Ease of Assembly Steel Hubs Standard •Special Lengths to Match Compressor Flange Mounts Taper Bores •Cast Spacers and Flywheel Adapters •Modified Designs Available •Flywheel/ Inertia Hubs

- Tuned Stiffness
- •High Torque Designs Available

|      |        |       |      |       |      |             | IONS (I | NCHES | 5)    |      |      |        | ADAPTE  | R O.D. / S | TOCKE  | BOLT P          | ATTERN |        |
|------|--------|-------|------|-------|------|-------------|---------|-------|-------|------|------|--------|---------|------------|--------|-----------------|--------|--------|
| SIZE | SDACED | MAX   | BORE |       |      |             | .) 0110 |       | -,    | 1    | SIZE | 12.375 | 13.875  | 18.375     | 20.375 | 22.500          | 26.500 | 28.875 |
| SIZE | SFACER |       |      | Δ     | в    | С           | D       | G     | L     | Р    | OILL | 12     | 14      | 18         | 20     | 22              | 26     | 28     |
|      |        | (in)  | (mm) |       | _    |             | _       | •     | _     | -    | 40   | Order  | SAE     | SAE        | Order  | SAE             |        |        |
| 40   | 31     | 0.75  | 400  | 0.00  | 0.00 | <b>F</b> 44 | 5.31    | 0.57  | 8.19  | 0.50 | 120  |        |         | SAE        | Order  | SAE             | SAE/HD | SAE/HD |
| 40   | 35     | 3.75  | 100  | 8.38  | 2.88 | 5.44        | 5.88    | 0.57  | 8 76  | 0.50 | 240  |        |         | SAE/HD     | Order  | SAE/HD          | SAE/HD | SAE/HD |
|      | 40     |       |      |       |      | -           | 7.44    |       | 44.00 |      | 560  |        |         |            |        | SAE/HD          | SAE/HD | SAE/HD |
|      | 42     |       |      |       |      |             | 7.14    |       | 11.39 |      | 1100 |        |         |            |        |                 | SAE/HD | SAE/HD |
| 120  | 45     | 4.50  | 120  | 11.00 | 4.25 | 6.51        | 7.64    | 0.75  | 11.89 | 0.75 |      |        |         | SAE BO     | DLTING |                 |        |        |
|      | 50     |       |      |       |      |             | 8.76    |       | 13.01 |      | BC   | 11.625 | 13.125  | 17.250     | 19.250 | 21.375          | 25.250 | 27.250 |
|      | 55     |       |      |       |      |             | 0.80    |       | 16 14 |      | QTY  | 8      | 8       | 8          | 8      | 6               | 12     | 12     |
| 240  | - 55   | 6.88  | 190  | 15.00 | 6.25 | 9.57        | 9.09    | 0.98  | 10.14 | 1.00 | DIA  | 0.41   | 0.41    | 0.53       | 0.53   | 0.65            | 0.65   | 0.78   |
|      | 60     |       |      |       |      |             | 10.89   |       | 17.14 |      |      |        |         | HD BO      | LTING  |                 |        |        |
|      | 70     |       |      |       |      |             | 12.44   |       | 19.69 |      | BC   | 11.500 | 12.500  | 16.750     | 18.500 | 20.500          | 24.500 | 26.875 |
| 560  | 75     | 8.00  | 220  | 18.00 | 7.25 | 11.63       | 13 51   | 1.32  | 20.76 | 1.13 | QTY  | 8      | 8       | 8          | 8      | 8               | 12     | 12     |
|      | 75     |       |      |       |      |             | 15.51   |       | 20.70 |      | DIA  | 0.53   | 0.65    | 0.78       | 0.91   | 1.03            | 1.03   | 1.03   |
|      | 80     |       |      |       |      |             | 14.76   |       | 23.76 |      |      | -      | SPEED L | MIT BY A   | DAPTER | <b>O.D.</b> (2b | )      | •      |
| 1100 | 85     | 10.00 | 280  | 22.00 | 9.00 | 14.50       | 15.76   | 1.56  | 24.76 | 1.38 | RPM  | 3,400  | 3,400   | 2,900      | 2,600  | 2,400           | 2,000  | 1,800  |
|      | 92     |       |      |       |      |             | 17 26   |       | 26.26 | 1    |      |        | NO      | LES.       |        | •               | •      | •      |

|      |        | RATED   | TORQUE    | PEAK      | МАХ   | WEIGHT | WR <sup>2</sup> | AXIAL  |
|------|--------|---------|-----------|-----------|-------|--------|-----------------|--------|
| SIZE | SPACER | HP PER  | (lh in)   | OVERLOAD  | RPM   | (1)    | (1)             | FLOAT  |
|      |        | 100 RPM | (10-111)  | (lb-in)   | (2a)  | (lb)   | (lb-in²)        | +/- in |
| 40   | 31     | 64      | 40.000    | 60.000    | 2 400 | 46     | 561             | 0.06   |
| 40   | 35     | 04      | 40,000    | 60,000    | 3,400 | 47     | 566             | 0.00   |
|      | 42     |         |           |           |       | 127    | 3,223           |        |
| 120  | 45     | 190     | 120,000   | 180,000   | 2,500 | 128    | 3,237           | 0.08   |
|      | 50     |         |           |           |       | 132    | 3,268           | 4      |
| 240  | 55     | 200     | 240.000   | 260.000   | 1 900 | 260    | 8,258           | 0.10   |
| 240  | 60     | 300     | 240,000   | 300,000   | 1,600 | 267    | 8,378           | 0.10   |
| 500  | 70     | 000     | 500.000   | 0.40.000  | 4 500 | 489    | 22,321          | 0.40   |
| 000  | 75     | 889     | 560,000   | 840,000   | 1,500 | 501    | 22,602          | 0.12   |
|      | 80     |         |           |           |       | 871    | 58,922          |        |
| 1100 | 85     | 1,746   | 1,100,000 | 1,650,000 | 1,200 | 887    | 59,563          | 0.14   |
|      | 92     |         |           |           |       | 922    | 65,615          | Ì      |

- Weight and WR<sup>2</sup> calculated with hub at maximum bore size and minimum available adapter size.
- 2) a) Max RPM shown for smallest available adapter size, do not exceed this speed for any given coupling size.
- b) Verify that adapter speed limit is adequate for application speed, do not exceed coupling MAX rpm. (See note 2a) 3) Flywheel mounting hardware is not sup-
- plied with coupling. 4) Consult factory for torsional stiffness and alternating torque limits.

### ORDERING INFORMATION:

- Specify coupling size and spacer option. Example: GCF240-60
- Specify adapter size code. Specify bolting pattern for items noted as drilled per order. Example: GCF240-60-26 or GCF240-60-20HD

Specify hub bore size and tolerance, keyway size or keyless, special hub length, etc.



GCS Series Coupling Spacer Coupling - General Purpose Use •Carbon Steel Flex Packs Standard

- •Unitized Flex Packs for Ease of Assembly
- Steel Hubs Standard
- Machined Steel Spacers
- •Modified Designs Available
- •High Torque Designs Available

The GCS coupling is a general purpose design for higher speed applications. It replaces the cast spacer of the GCH coupling with a fully machined steel spool spacer. This coupling is suitable for moderate to high speed operation on a wide range of general purpose motor and turbine driven equipment, including pumps, compressors and fans. It can be supplied with custom length spacers, balancing and other modifications to suit your special system requirements.

GCS couplings use stocked GC hubs and hardware. Spacers are machined to order to meet your application requirements.





|      | ΜΔΧ       | BORF |       | DIMENSIONS (INCHES) |       |           |      |  |  |  |  |  |
|------|-----------|------|-------|---------------------|-------|-----------|------|--|--|--|--|--|
| SIZE | (in)      | (mm) | Α     | в                   | С     | D<br>min. | G    |  |  |  |  |  |
| 40   | 3.75      | 100  | 8.38  | 2.88                | 5.44  | 4.62      | 0.57 |  |  |  |  |  |
| 120  | 4.50      | 120  | 11.00 | 4.25                | 6.51  | 6.60      | 0.75 |  |  |  |  |  |
| 300  | 6.88 (3)  | 190  | 15.00 | 6.25                | 9.57  | 7.94      | 0.98 |  |  |  |  |  |
| 640  | 8.00 (3)  | 220  | 18.00 | 7.25                | 11.63 | 10.18     | 1.32 |  |  |  |  |  |
| 1200 | 10.00 (3) | 280  | 22.00 | 9.00                | 14.50 | 11.72     | 1.56 |  |  |  |  |  |

### ORDERING INFORMATION:

- 1) Specify coupling size and DBSE required. Example: GCS300, D=8.00 in.
- Specify hub bore size and tolerance, keyway size or keyless, special hub length, etc. Please specify for each hub.

|      | RATED TORQUE |           | PEAK      | МАХ        | ΜΑΧ      | WEIG              | HT (lb)  | WR <sup>2</sup> ( | AXIAL    |        |
|------|--------------|-----------|-----------|------------|----------|-------------------|----------|-------------------|----------|--------|
| SIZE | HP PER       | (11. :)   | OVERLOAD  | RPM        | RPM      | AT                | ADD      | AT                | ADD      | FLOAT  |
|      | 100 RPM      | (in-in)   | (lb-in)   | UNBALANCED | BALANCED | <b>D min.</b> (1) | PER INCH | <b>D min.</b> (1) | PER INCH | +/- in |
| 40   | 64           | 40,000    | 80,000    | 6,100      | 12,000   | 45                | 0.87     | 399               | 6.0      | 0.06   |
| 120  | 190          | 120,000   | 240,000   | 5,000      | 9,800    | 113               | 1.88     | 1,635             | 17.9     | 0.08   |
| 300  | 476          | 300,000   | 600,000   | 4,100      | 7,100    | 287               | 3.12     | 8,126             | 66.0     | 0.10   |
| 640  | 1,015        | 640,000   | 1,280,000 | 3,500      | 5,900    | 540               | 5.54     | 22,009            | 170      | 0.12   |
| 1200 | 1,904        | 1,200,000 | 2,300,000 | 3,100      | 4,800    | 984               | 8.29     | 60,443            | 397      | 0.14   |

### NOTES:

1) Weight and WR<sup>2</sup> are calculated for couplings with DBSE = D min. and hubs at maximum bore size.

2) Consult factory for torsional stiffness and alternating torque limits.

3) Size 300, 640 & 1200 hubs are heat treated when bore size is within 1/4 in. of max bore.



**GCT Series Coupling** Floating Shaft Spacer

•Carbon Steel Flex Packs Standard

Unitized Flex Packs for Ease of Assembly

Steel Hubs Standard

Steel or Composite spacer tubing is available

- •Vertical installation modifications are available
- •High Torque Designs Available

The GCT coupling uses a fabricated spacer for long spans. Spacers are welded, straightened and balanced to order. Custom steel or composite tube sizes are available to meet most application requirements. Couplings may also be modified for vertical operation. Semi-floating versions can be supplied if bearing supports or multi-section drivelines are required.



|      |                 |       |      |            |       |           |       | DIME  | NSIONS ( | INCHES) |      |          |              |     |
|------|-----------------|-------|------|------------|-------|-----------|-------|-------|----------|---------|------|----------|--------------|-----|
| SIZE | SPACER<br>STYLE |       | BURE | 10         |       | в         | 6     | D     | 6        |         | MAX  | D PER RP | <b>M</b> (3) |     |
|      | 0               | (in)  | (mm) | <b>A</b> 3 | AI    |           | J     | min   | G        | 1800    | 1500 | 1200     | 900          | 600 |
| 40   | А               | 3.75  | 100  | 8.38       | -     | 2.88      | 5.44  | 20.00 | 0.57     | 111     | 122  | 136      | 157          | 193 |
| 120  | А               | 4.50  | 120  | 11.00      | -     | 4.25      | 6.51  | 20.00 | 0.75     | 123     | 135  | 151      | 174          | 213 |
| 240  | А               | 6.88  | 100  | 15.00      | -     | 6.25      | 0.57  | 20.00 | 0.09     | 150     | 164  | 184      | 212          | 260 |
| 300  | В               | (4)   | 190  | 15.00      | 16.00 | 0.25 9.57 | 9.57  | 30.00 | 0.90     | 165     | 180  | 202      | 233          | 285 |
| 500  | А               | 8.00  | 220  | 19.00      | -     | 7.05      | 11 62 | 20.00 | 1 22     | 165     | 180  | 202      | 233          | 285 |
| 640  | В               | (4)   | 220  | 10.00      | 19.69 | 7.25      | 11.05 | 30.00 | 1.52     | 183     | 200  | 223      | 258          | 316 |
| 840  | А               | 10.00 | 200  | 22.00      | -     | 0.00      | 14 50 | 20.00 | 1 56     | 182     | 200  | 223      | 258          | 316 |
| 1200 | В               | (4)   | 200  | 22.00      | 24.50 | 9.00      | 14.50 | 30.00 | 1.50     | 207     | 227  | 254      | 294          | 360 |

|      |                 | RATED   | TORQUE    | PEAK      | WEIG             | HT (lb)  | WR <sup>2</sup>  | (lb-in²) | AXIAL  |
|------|-----------------|---------|-----------|-----------|------------------|----------|------------------|----------|--------|
| SIZE | SPACER<br>STYLE | HP PER  | (lh in)   | OVERLOAD  | AT               | ADD      | AT               | ADD      | FLOAT  |
|      | UTTEE           | 100 RPM | (in-in)   | (lb-in)   | <b>D min</b> (1) | PER INCH | <b>D min</b> (1) | PER INCH | +/- in |
| 40   | А               | 64      | 40,000    | 80,000    | 68               | 1.12     | 656              | 7.00     | 0.06   |
| 120  | А               | 190     | 120,000   | 240,000   | 152              | 2.05     | 2,382            | 19.34    | 0.08   |
| 240  | А               | 380     | 240,000   | 480,000   | 348              | 3.06     | 11,654           | 63.81    | 0.10   |
| 300  | В               | 476     | 300,000   | 600,000   | 500              | 3.73     | 18,457           | 116      | 0.10   |
| 500  | А               | 793     | 500,000   | 1,000,000 | 631              | 4.92     | 29,645           | 149      | 0.12   |
| 640  | В               | 1,015   | 640,000   | 1,280,000 | 841              | 4.57     | 45,329           | 212      | 0.12   |
| 840  | А               | 1,333   | 840,000   | 1,680,000 | 1091             | 6.04     | 79,869           | 275      | 0.14   |
| 1200 | В               | 1,904   | 1,200,000 | 2,300,000 | 1541             | 7.82     | 129,359          | 600      | 0.14   |

### **ORDERING INFORMATION:**

- 1) Specify coupling size and DBSE required. Example: GCT240, D=149.50 in.
- 2) Specify hub bore size and tolerance, keyway size or keyless, etc. Please specify for each hub.

### NOTES:

- Weight and WR<sup>2</sup> are calculated at D min, with hubs at maximum bore size. 1) 2)
- Consult factory for torsional stiffness and alternating torque limits.
- 3) 4) Please consult factory for longer Distances Between Shaft Ends.
- Size 300, 640 & 1200 hubs are heat treated when bore size is within 1/4 in. of max bore.



# Offers You a Complete Line of Power Transmission Products



"New" Torque Sentry Torque Overload Protection

Disc Couplings Full Line of Standard and Made to Order High Performance



Gear Couplings High Torque, High Misalignment

Metal Seal "Original Gear" Coupling

> "Original Grid" Coupling Fully Interchangeable







Full Line of Mill Duty Industrial Universal Joints

> Mill Spindles Maximum Torque and Service Life Custom Designs



Ameriflex Diaphragm Ultimate in Dry Coupling Design

> "New" Ameriflex Dry Disconnect Coupling





# **Ameridrives International**

Oil & Gas Products 1411 FM 1101, Suite B, New Braunfels, Texas 78130 Phone: (830) 626-8759 Fax: (830) 626-8772 Email: info@ameridrives.com

## **Bibby Transmissions Limited**

Cannon Way, Mill Street West, Dewsbury, West Yorkshire, WF13 1EH Phone: +44 (0) 1924 460801 Fax: +44 (0) 1924 457668

### Headquarters

1802 Pittsburgh Avenue, Erie, Pennsylvania 16512-4000 Phone: (814) 480-5000 Fax: (814) 453-5891 Email: info@ameridrives.com www.ameridrives.com

> A Division of Altra Industrial Motion