**ROBUST AND COMPACT** 

Full disengagement

# TORQSET® TORQUE LIMITERS

SERIES ST | 2,000 - 165,000 Nm





THE ULTIMATE COUPLING FROM 2,000 - 165,000 Nm



## SERIES ST

#### **TORQUE LIMITERS**

#### Areas of application for the ST

- Rolling mills
- Levelers
- Marine propulsion
- Industrial shredders
- Industrial conveyors
- Test standsExtruders
- Wastewater treatment
- Tunnel boring machines
- and many more

#### Features of the ST

- Compact, simple design
- Full disengagement
- Robust
- Precise overload protection
- Torsionally rigid
- Adjustable torque setting
- Infinite life and maintenance free

## RELIABLE TORQUE OVERLOAD PROTECTION



ST series safety couplings are designed to decouple machine drives in the event of torque overload, preventing damage and downtime.

A series of ball bearings are spring loaded into detents on an otherwise freely spinning output plate. In the case of the ST series, these ball bearings are mounted onto plungers which are individually loaded in order to generate high clutching forces while maintaining a relatively small profile.

The transmittable torque is determined by the number and force setting of the plunger modules and their distance from the center of the rotational axis. In the event of an overload, the force applied by the detents causes the plungers to overcome the spring loading and retract into the housings, resulting in a complete separation of the driving and driven hubs.

They will not re-engage automatically. After the overload condition has passed, an axial force must be applied in order to re-engage the plunger modules into the detents of the output plate.

This is normally accomplished without any special tools, simply requiring a mallet or pry bar.



For disengagement torque values ranging from 1,000 to 160,000 Nm, the ST series comes from the factory preset to the required disengagement torque value. They are also adjustable, with incremental markings to indicate the force setting of each plunger module. Plunger modules can be added and removed in sets of three for larger adjustments.

Custom flanges, materials, and mounting arrangements are available upon request.

Contact R+W with your application details and requirements.





#### MODELS



#### **POSSIBLE APPLICATIONS**





- Compensation for misalignment
- Precise overload protection

see page 10



## MODEL ST1

#### **TORQUE LIMITER**



#### with keyway connection

#### Material:

High-strength, nitro-carburized steel

#### Design:

<u>Drive side:</u> Coupling hub with keyway connection or spline profile.

<u>Driven side:</u> Output flange with 12x fastening threads and integral bearings.

<u>Torque modules:</u> Evenly spaced around the circumference. Field adjustable within the selected range.

Temperature range: -30 to +120° C

**Service life:** Infinite life and maintenance free when operated within the technical specifications.

#### Fit tolerance:

Tolerance between hub and shaft 0.02 - 0.07 mm

#### Non standard applications:

Automatic re-engagement, ATEX certified, stainless steel construction

| MODEL CT 1                           |                       |                | Series    |           |           |           |            |           |           |            |           |           |            |           |  |
|--------------------------------------|-----------------------|----------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|--|
|                                      |                       |                |           | 10        |           |           | 25         |           |           | 60         |           |           | 160        |           |  |
| Adjustment range                     |                       |                | 2-6       | 4-12      | 6-18      | 3-8       | 5-16       | 10-25     | 11-20     | 22-40      | 35-60     | 25-55     | 50-110     | 80-165    |  |
| available from - to                  | (KNm)                 |                | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 15 | 6 x ST 15  | 9 x ST 15 | 3 x ST 30 | 6 x ST 30  | 9 x ST 30 | 3 x ST 70 | 6 x ST 70  | 9 x ST 70 |  |
| Overall length                       | (mm)                  | A <sub>1</sub> |           | 183       |           |           | 230        |           |           | 320        |           | 410       |            |           |  |
| Bore depth                           | (mm)                  | A <sub>2</sub> |           | 158       |           |           | 200        |           |           | 275        |           | 360       |            |           |  |
| Flange outside diameter              | (mm)                  | В              |           | 270       |           |           | 318        |           |           | 459        |           |           | 648        |           |  |
| Fit length                           | (mm)                  | С              |           | 120       |           |           | 155        |           |           | 220        |           |           | 290        |           |  |
| Bore diameter possible Ø to Ø F7     | (mm)                  | D              |           | 40-110    |           |           | 60-140     |           |           | 80-200     |           |           | 100-290    |           |  |
| Flange centering diameter H7         | (mm)                  | E              |           | 170       |           |           | 210        |           |           | 300        |           | 450       |            |           |  |
| Bolt circle diameter ±0.3            | (mm)                  | F              |           | 220       |           |           | 260        |           | 360       |            |           | 570       |            |           |  |
| Outside diameter h7                  | (mm)                  | G              |           | 259       |           |           | 298        |           | 418       |            |           | 618       |            |           |  |
| Fastening threads                    |                       | Н              |           | 12 x M16  |           |           | 12 x M16   |           |           | 12 x M20   |           |           | 12 x M24   |           |  |
| Thread depth                         | (mm)                  | I              |           | 25        |           |           | 30         |           |           | 35         |           |           | 40         |           |  |
| Fit length                           | (mm)                  | J              |           | 6         |           |           | 8          |           | 8         |            |           | 10        |            |           |  |
| Wall thickness                       | (mm)                  | K              |           | 17        |           |           | 20         | 20        |           | 30         |           |           | 38         |           |  |
| Distance                             | (mm)                  | L              |           | 45        |           |           | 83         |           | 96        |            |           | 136       |            |           |  |
| Distance                             | (mm)                  | Μ              |           | 95        |           |           | 130        |           |           | 165        |           |           | 225        |           |  |
| Actuation path                       | (mm)                  | Ν              |           | 4         |           |           | 4          |           |           | 7,5        |           |           | 10         |           |  |
| Bolt circle diameter - modules       | (mm)                  | 0              |           | 220       |           |           | 270        |           |           | 376        |           |           | 532        |           |  |
| Hub outside diameter                 | (mm)                  | Р              |           | 170       |           |           | 218        |           |           | 295        |           |           | 418        |           |  |
| Bore for fastening screw             | (mm)                  | Q              |           | max. 110  |           |           | max. Ø 140 |           |           | max. Ø 200 |           |           | max. Ø 290 |           |  |
| Moment of inertia (approx.) D max.(1 | 0 <sup>-3</sup> kgm²) |                |           | 370       |           | 780       |            | 4600      |           |            | 24600     |           |            |           |  |
| Speed max.                           | (rpm)                 |                |           | 4200      |           |           | 3800       |           | 2500      |            | 2000      |           |            |           |  |
| Allowable max. radial force standard | 1* (KN)               |                |           | 40        |           | 60        |            | 100       |           |            | 200       |           |            |           |  |
| Approx. weight at D max.             | (kg)                  |                |           | 40        |           |           | 63         |           |           | 179        |           |           | 463        |           |  |

\* higher radial force through additional bearing support.



## MODEL STN

#### **TORQUE LIMITER**



#### Material:

High-strength, nitro-carburized steel

#### Design:

Drive side: Coupling hub with tapered conical clamping connection Driven side: Output flange with 12x fastening

threads and integral bearings. Torque modules: Evenly spaced around the circumference. Field adjustable within the selected range.

Temperature range: -30 to +120° C

Service life: Infinite life and maintenance free when operated within the technical specifications.

#### Fit tolerance:

Tolerance between hub and shaft 0.02 - 0.07 mm

#### Non standard applications:

Automatic re-engagement, ATEX certified, stainless steel construction

| MODEL CTN                             |                     |                |           |           |           |           | Sei       | ries      |           |           |           |           |           |           |  |
|---------------------------------------|---------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| MUDEL SIN                             |                     |                |           | 10        |           |           | 25        |           |           | 60        |           |           | 160       |           |  |
| Adjustment range                      |                     |                | 2-6       | 4-12      | 6-18      | 3-8       | 5-16      | 10-25     | 11-20     | 22-40     | 35-60     | 25-55     | 50-110    | 80-165    |  |
| available from - to                   | (KNm)               |                | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 30 | 6 x ST 30 | 9 x ST 30 | 3 x ST 70 | 6 x ST 70 | 9 x ST 70 |  |
| Overall length                        | (mm)                | A <sub>1</sub> |           | 210       |           |           | 227       |           | 318       |           |           |           | 425       |           |  |
| Flange outside diameter               | (mm)                | В              |           | 270       |           |           | 318       |           |           | 459       |           | 648       |           |           |  |
| Fit length / keyway length            | (mm)                | C <sub>1</sub> |           | 147       |           |           | 152       |           |           | 218       |           |           | 305       |           |  |
| Effective clamping length             | (mm)                | C <sub>2</sub> |           | 62        |           |           | 67        |           |           | 93        |           |           | 125       |           |  |
| Bore diameter possible Ø to Ø F7      | (mm)                | D <sub>1</sub> |           | 65 - 110  |           |           | 70 - 150  |           |           | 80 - 200  |           |           | 140 - 290 |           |  |
| Bore diameter max. Ø F7 with keyway   | (mm)                | D,             |           | 100       |           |           | 140       |           |           | 180       |           |           | 270       |           |  |
| Inside diameter                       | (mm)                | D <sub>2</sub> |           | 110,2     |           |           | 140,2     |           |           | 200,2     |           |           | 290,2     |           |  |
| Flange centering diameter H7          | (mm)                | E              |           | 170       |           |           | 210       |           | 300       |           |           | 450       |           |           |  |
| Bolt circle diameter ±0.3             | (mm)                | F              |           | 220       |           |           | 260       |           |           | 360       |           |           | 570       |           |  |
| Outside diameter h7                   | (mm)                | G              |           | 259       |           |           | 298       |           |           | 418       |           |           | 618       |           |  |
| Fastening threads                     |                     | Н              |           | 12 x M16  |           |           | 12 x M16  |           |           | 12 x M20  |           |           | 12 x M24  |           |  |
| Thread depth                          | (mm)                | I              |           | 25        |           |           | 30        |           |           | 35        |           | 40        |           |           |  |
| Fit length                            | (mm)                | J              |           | 6         |           |           | 8         |           | 8         |           |           | 10        |           |           |  |
| Tightening screw ISO 4017             |                     | V              |           | 8 x M16   |           | 9 x M16   |           | 8 x M20   |           |           | 8 x M24   |           |           |           |  |
| Tightening torque                     | (Nm)                | ĸ              |           | 180       |           |           | 180       |           |           | 300       |           |           | 710       |           |  |
| Distance                              | (mm)                | L              |           | 72        |           |           | 80        |           |           | 94        |           |           | 151       |           |  |
| Distance                              | (mm)                | М              |           | 122       |           |           | 127       |           |           | 163       |           |           | 240       |           |  |
| Actuation path                        | (mm)                | Ν              |           | 4         |           |           | 4         |           |           | 7,5       |           |           | 10        |           |  |
| Bolt circle diameter - modules        | (mm)                | 0              |           | 220       |           |           | 270       |           |           | 376       |           |           | 532       |           |  |
| Hub outside diameter                  | (mm)                | Р              |           | 218       |           |           | 278       |           |           | 378       |           |           | 535       |           |  |
| Moment of inertia (approx.) D max.(10 | <sup>⊢3</sup> kgm²) |                |           | 446       |           |           | 789       |           |           | 5700      |           |           | 30700     |           |  |
| Speed max.                            | (rpm)               |                |           | 4200      |           | 3800      |           | 2500      |           |           | 2000      |           |           |           |  |
| Allowable max. radial force standard* | (KN)                |                |           | 40        |           |           | 60        |           | 100       |           |           | 200       |           |           |  |
| Approx. weight at D max.              | (kg)                |                |           | 50        |           |           | 65        |           |           | 200       |           | 550       |           |           |  |

\* higher radial force through additional bearing support.



## MODEL ST1/STN

#### Mounting example with sprocket and keyway connection





#### Mounting example with timing belt sprocket and conical clamping hub





#### Mounting example with universal drive shaft



Bolt circle and centering diameter are matched to the drive shaft.

Mounting with intermediate flange.

Flange mounting on both sides possible.



## **Designs for Direct Drives**

with integral elastomer jaw coupling

## MODEL ST 2



#### with integral disc pack coupling

## MODEL ST 3



#### with integral gear coupling

## MODEL ST 4



#### Torque 2,000 - 165,000 Nm

#### **Features**

- Vibration damping
- Compensation for axial, lateral,
- and angular misalignment
- Robust
- Mounts axially

see pages 8/9

#### Torque 2,000 – 165,000 Nm

#### **Features**

- Torsionally rigid for precise torque transmission
- Compensation for axial, lateral, and angular misalignment
- Low restoring forces
- Wear and maintenance free

ipon request

#### Torque 2,000 - 165,000 Nm

#### **Features**

- High torque density
- Compensation for axial, lateral, and angular misalignment
- Low restoring forces
- Robust

see page 10



## MODEL ST 2

#### **TORQUE LIMITER**



disengagement torque

#### with integral elastomer coupling

#### Material:

<u>Torque limiter:</u> High-strength, nitro-carburized steel <u>Elastomer segments:</u> precision molded, wear resistant rubber compound (75-80 Shore A) <u>Elastomer coupling:</u> coupling hubs made from highstrength, cast steel (coated)

**Design:** with keyway or spline connection. Elastomer segments for misalignment compensation. Torque modules evenly spaced around the circumference. Field adjustable within the selected range.

Temperature range: see page 9

**Service life:** Infinite life and maintenance free when operated within the technical specifications.

#### Fit tolerance:

Tolerance between hub and shaft 0.02 - 0.07 mm

**Balancing:** Standard balancing G16 (higher speeds upon request)

Non standard applications:

Automatic re-engagement

|                                                                          |                                      | Series         |           |           |           |           |           |           |           |           |           |           |           |           |
|--------------------------------------------------------------------------|--------------------------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| WUDEL SI Z                                                               |                                      |                |           | 10        |           |           | 25        |           |           | 60        |           |           | 160       |           |
| Adjustment range                                                         |                                      |                | 2-6       | 4-12      | 6-18      | 3-8       | 5-16      | 10-25     | 11-20     | 22-40     | 35-60     | 25-55     | 50-110    | 80-165    |
| available from - to                                                      | (KNm)                                |                | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 30 | 6 x ST 30 | 9 x ST 30 | 3 x ST 70 | 6 x ST 70 | 9 x ST 70 |
| Overall length ±2                                                        | (mm)                                 | Α <sub>1</sub> |           | 360       |           |           | 437       |           | 580       |           |           | 730       |           |           |
| Length of torque limiting portion                                        | (mm)                                 | A <sub>2</sub> |           | 183       |           |           | 230       |           |           | 320       |           | 410       |           |           |
| Flange OD (ST portion)                                                   | (mm)                                 | Β <sub>1</sub> |           | 270       |           |           | 318       |           |           | 459       |           |           | 648       |           |
| Flange OD (elastomer portion)                                            | (mm)                                 | B <sub>2</sub> |           | 290       |           |           | 330       |           |           | 432       |           |           | 553       |           |
| Fit length/keyway length D1                                              | (mm)                                 | C <sub>1</sub> |           | 97        |           |           | 116       |           |           | 160       |           |           | 230       |           |
| Fit length/keyway length D2                                              | (mm)                                 | C <sub>2</sub> |           | 120       |           |           | 155       |           |           | 220       |           |           | 290       |           |
| Bore depth (torque limiting portion)                                     | (mm)                                 | С <sub>3</sub> |           | 158       |           |           | 200       |           |           | 275       |           |           | 360       |           |
| Bore diameter (elastomer portion) Ø –                                    | Ø F7 (mm)                            | D <sub>1</sub> |           | 40-105*   |           |           | 60-130*   |           | 80-160*   |           |           | 100-200*  |           |           |
| Bore diameter (torque limiting portion) Ø                                | — Ø F7 (mm)                          | D <sub>2</sub> |           | 40-110    |           |           | 60-140    |           |           | 80-200    |           |           | 100-290   |           |
| Length to cover                                                          | (mm)                                 | Ε,             |           | 70        |           |           | 87        |           |           | 112       |           |           | 152       |           |
| Length to (cover removed)                                                | (mm)                                 | E <sub>2</sub> |           | 22        |           |           | 26        |           |           | 40        |           |           | 65        |           |
| Hub diameter                                                             | (mm)                                 |                |           | 160       |           |           | 200       |           |           | 255       |           |           | 300       |           |
| Bore for fastening screw                                                 | (mm)                                 | G              |           | max. 110  |           | max. 140  |           |           | max. 200  |           |           | max. 290  |           |           |
| Distance                                                                 | (mm)                                 | L              |           | 45        |           | 83        |           | 96        |           |           | 136       |           |           |           |
| Distance                                                                 | (mm)                                 | М              |           | 95        |           |           | 130       |           | 165       |           |           | 225       |           |           |
| Actuation path                                                           | (mm)                                 | Ν              |           | 4         |           |           | 4         |           | 7.5       |           |           |           | 10        |           |
| Bolt circle diameter ST                                                  | (mm)                                 | 0              |           | 220       |           |           | 270       |           |           | 376       |           |           | 532       |           |
| Hub outside diameter                                                     | (mm)                                 | Р              |           | 170       |           |           | 218       | 18        |           | 295       |           |           | 418       |           |
| Moment of inertia (approx.) D max.                                       | (10 <sup>-3</sup> kgm <sup>2</sup> ) |                |           | 854       |           |           | 1850      |           |           | 8960      |           |           | 36858     |           |
| Speed max.                                                               | (rpm)                                |                |           | 2700      |           |           | 2300      |           |           | 1800      |           |           | 1500      |           |
| Approx. weight at D max.                                                 | (kg)                                 |                |           | 80        |           |           | 115       |           |           | 287       |           |           | 729       |           |
| Axial - 🗄 🕀 🗘                                                            | (mm)                                 |                |           | 1.5       |           |           | 1.5       |           |           | 2         |           | 2.5       |           |           |
| Lateral 📲                                                                | (mm)                                 |                |           | 0.4       |           |           | 0.5       |           | 0.6       |           |           | 0.7       |           |           |
| Angular                                                                  | (Degrees)                            |                |           | 1         |           |           | 1         |           | 1         |           |           | 1         |           |           |
| Dynamic torsional stiffness<br>at T <sub>KN</sub> (Standard A Insert) (1 | 103 Nm/rad)                          |                |           | 145       |           |           | 230       |           | 580       |           |           | 1000      |           |           |

8 | R+W



## MODEL ST 2

#### The elastomer segments

The compensating elements of the ST2 safety couplings are the elastomer segments. They transmit torque while damping vibration and compensating for lateral, axial, and angular misalignment.

The standard elastomer segment is the type "A". Three different types are available.

| Туре         | Relative damping<br>(ψ) | Temperature range<br>constant peak |        | Material                     | Shore hardness | Features                            |
|--------------|-------------------------|------------------------------------|--------|------------------------------|----------------|-------------------------------------|
| A (Standard) | 1.0                     | -40°C to +80°C                     | +90°C  | Natural and synthetic rubber | 75-80 Shore A  | Very high wear resistance           |
| В            | 1.0                     | -40°C to +100°C                    | +120°C | Synthetic rubber             | 73-78 Shore A  | Resistant to many oils<br>and fuels |
| С            | 1.0                     | -70°C to +120°C                    | +140°C | Silicone rubber              | 70-75 Shore A  | High temperature range              |



**Note:** Elastomer segments can be easily changed after installation. Every coupling utilizes 6x elastomer segments.

The elastomer segments do not need to be installed prior to coupling mounting.





## MODEL ST 4

#### **TORQUE LIMITER**



#### with integral gear coupling

#### Material:

<u>Torque limiter:</u> High-strength, nitro-carburized steel

<u>Gear coupling hubs:</u> Extremely wear resistant tooth geometry made from high-strength alloy steel (surface nitro-carburized)

**Design:** with keyway or spline connection. Gear coupling for misalignment compensation. Torque modules evenly spaced around the circumference. Field adjustable within the selected range.

Temperature range: -30 to +120° C

#### Service life:

Infinite life when properly maintained and operated within the technical specifications.

#### Fit tolerance:

Tolerance between hub and shaft 0.02 - 0.07 mm

**Balancing:** Standard balancing G16 (higher speeds upon request)

Non standard applications:

Automatic re-engagement

|                                   |                                        |                  |           |           |           |           |           | Sei       | ries      |           |           |           |           |           |
|-----------------------------------|----------------------------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| MUDEL ST 4                        |                                        |                  |           | 10        |           |           | 25        |           |           | 60        |           |           | 160       |           |
| Adjustment range                  |                                        |                  | 2-6       | 4-12      | 6-18      | 3-8       | 5-16      | 10-25     | 11-20     | 22-40     | 35-60     | 25-55     | 50-110    | 80-165    |
| available from - to               | (KNm)                                  |                  | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 15 | 6 x ST 15 | 9 x ST 15 | 3 x ST 30 | 6 x ST 30 | 9 x ST 30 | 3 x ST 70 | 6 x ST 70 | 9 x ST 70 |
| Overall length                    | (mm)                                   | A <sub>1</sub>   |           | 377       |           |           | 430       |           |           | 615       |           | 850       |           |           |
| Flange OD (ST portion)            | (mm)                                   | Β,               |           | 270       |           |           | 318       |           |           | 459       |           | 648       |           |           |
| Mounting flange (ST portion)      | (mm)                                   | B <sub>2</sub>   |           | 259       |           |           | 298       |           |           | 418       |           |           | 618       |           |
| Flange diameter (gear coupling)   | (mm)                                   | B <sub>3</sub>   |           | 234       |           |           | 274       |           |           | 380       |           |           | 506       |           |
| Hub diameter (gear coupling)      | (mm)                                   | B <sub>4</sub>   |           | 181       |           |           | 209       |           |           | 307       |           |           | 426       |           |
| Fit length/keyway length          | (mm)                                   | C <sub>1/2</sub> |           | 90        |           |           | 105       |           |           | 150       |           |           | 220       |           |
| Bore diameter Ø – Ø F7            | (mm)                                   | D <sub>1/2</sub> |           | 40-112*   |           |           | 55-132*   |           | 90-198*   |           |           | 150-275*  |           |           |
| Length                            | (mm)                                   | E,               |           | 92.5      |           |           | 108       |           | 154       |           |           | 225       |           |           |
| Length                            | (mm)                                   | E <sub>2</sub>   |           | 70        |           |           | 79        |           |           | 116       |           |           | 196       |           |
| Screw DIN 609 12.9                | (mm)                                   | -                |           | 8 x M16   |           |           | 8 x M20   |           |           | 10 x M20  |           | 16 x M24  |           |           |
| Tightening torque                 | (Nm)                                   | F                |           | 280       |           |           | 650       |           |           | 650       |           | 1100      |           |           |
| Distance                          | (mm)                                   | L                |           | 146       |           |           | 172       |           | 237       |           |           | 320       |           |           |
| Distance                          | (mm)                                   | М                |           | 196       |           |           | 222       |           |           | 306       |           | 412       |           |           |
| Actuation path                    | (mm)                                   | N                |           | 4         |           |           | 4         |           | 7.5       |           |           |           | 10        |           |
| Bolt circle diameter ST           | (mm)                                   | 0                |           | 220       |           |           | 270       | ·0        |           | 376       |           |           | 532       |           |
| Moment of inertia (approx.) D max | . (10 <sup>-3</sup> kgm <sup>2</sup> ) |                  |           | 545       |           |           | 1298      |           |           | 7547      |           |           | 39742     |           |
| Speed max.                        | (rpm)                                  |                  |           | 2700      |           |           | 2300      |           |           | 1800      |           |           | 1500      |           |
| Approx. weight at D max.          | (kg)                                   |                  |           | 69        |           |           | 115       |           | 325       |           |           | 870       |           |           |
| Axial 🗊 🗘                         | (mm)                                   |                  |           | 4         |           |           | 5         |           |           | 6         |           | 8         |           |           |
| Lateral 👔                         | (mm)                                   |                  |           | 6         |           |           | 7         |           | 8         |           | 10        |           |           |           |
| Angular 📲                         | (Dearees)                              |                  |           | 1.2       |           |           | 1.2       |           | 12        |           | 1.2       |           |           |           |

10 | R+W

\* larger bore diameters upon request.



## MODEL ST 4

#### Function of the gear coupling

The high precision gearing of the coupling compensates for lateral, angular, and axial misalignment. The gearing transmits torque with minimal backlash and a high degree of torsional rigidity. The precise geometry of the gearing ensures the performance of the coupling.



**Axial misalignment** 

#### **Maintenance and lubrication**



| Ordering example                      |  |  |  |  |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|--|--|--|--|
| ST4/025/10-25/15/100/120/xx           |  |  |  |  |  |  |  |  |  |
| Model Series Adjustment areas ((Alar) |  |  |  |  |  |  |  |  |  |
| Disengagement torque (KNm)            |  |  |  |  |  |  |  |  |  |
| Bore Ø D <sub>1</sub> F7              |  |  |  |  |  |  |  |  |  |
| Bore Ø D <sub>2</sub> F7              |  |  |  |  |  |  |  |  |  |
| Non-standard (e.g. stainless steel)   |  |  |  |  |  |  |  |  |  |



#### Angular and lateral misalignment

#### **Recommended lubricants**

**Note:** Lubrication of the gearing is very important to the service life of the coupling.

An additional seal (optional) ensures the lubrication of the gearing over a long period of time.

| Normal sp | peed                             | High speed |                      |  |  |  |  |
|-----------|----------------------------------|------------|----------------------|--|--|--|--|
| Castrol   | Impervia MDX                     | Caltex     | Coupling Grease      |  |  |  |  |
| Esso      | Fibrax 370                       | Klüber     | Klüberplex GE 11-680 |  |  |  |  |
| Klüber    | Klüberplex GE 11-680             | Mobil      | Mobilgrease XTC      |  |  |  |  |
| Mobil     | Mobilux EPO                      | Shell      | Albida GC1           |  |  |  |  |
| Shell     | Alvania grease EP<br>R-O or ER 1 | Texaco     | Coupling Grease      |  |  |  |  |
| Total     | Specis EPG                       |            |                      |  |  |  |  |

For easier handling, the coupling will be shipped unassembled.



## MODEL ST1/STN/ST2/ST3/ST4

#### **TORQUE LIMITER**

#### **Mounting Instructions**



Note: All torque modules must be set to the same value.

After loosening (approx. 1 rotation) the locking screws ( $E_3$ ), the adjustment nut can be turned to adjust the disengagement setting. Incremental values are marked on the adjustment scale. After adjustment, the torque setting is secured by tightening the locking screws ( $E_3$ ).

#### Re-engagement of the torque modules



#### Manual disengagement of modules



Engaged module



Prior to machine start-up, the individual modules can be manually disengaged. A manual disengagement tool is available from R+W (see page 13).

# MODEL **ATEX**

#### FOR USE IN EXPLOSIVE ATMOSPHERES

Regulated under the new European directive, ATEX 95a. Explosive atmospheres are classified into 3 different zones.

**Zone 0:** An explosive atmosphere consisting of a mixture of air and flammable substances, in the form of a gas, vapor, or mist, that is present frequently, continuously, or for extended periods of time.

**Zone 20:** An explosive atmosphere consisting of clouds of combustible dust in the air under the same conditions above.

**Zone 1:** An explosive atmosphere consisting of a mixture air and flammable substances, in the form of gas, vapor, or mist, that is likely to occur in normal operation occasionally.

**Zone 21:** An explosive atmosphere consisting of clouds of combustible dust in the air under the same conditions above.

**Zone 2:** An explosive atmosphere consisting of a mixture air and flammable substances, in the form of gas, vapor, or mist, that is unlikely to occur in normal operation, but would only persist for a short period of time if it were to occur.

**Zone 22:** An explosive atmosphere consisting of clouds of combustible dust in the air under the same conditions above.

For zones 1/21 and 2/22, ST-EEx torque limiters can be supplied with ATEX 95a accreditation.

#### Mounting and operating instructions:

Detailed mounting and instruction manuals are supplied with the ST-EEx torque limiters.

The following information is included:

- Assembly of the ST-EEx torque limiter
- Precise tightening torques and misalignment ratings
- Details covering proper implementation
- Maintenance
- Inspection intervals
- Troubleshooting
- Coupling identification markings
- Certificate of conformance

#### Identification:

All ST-EEx torque limiters are inscribed with manufacturer and accreditation information.

#### Accreditation information example:



Typ: ST1 25 EEx-2009 II 2 G D EEx c T3 / 200°C Ser.No.: A 200101.1 Tech.Ref.No.:2009/008RW

## ACCESSORIES

#### Disengagement/re-engagement tool





Disengaged module

#### Face spanner wrench

# For rotation of adjustment nut

#### Order-No.: see table

| Series | Disengagement/re-engagement tool |
|--------|----------------------------------|
| 15     | Order-No. AV/0015                |
| 30     | Order-No. AV/0030                |
| 70     | Order-No. AV/0070                |

#### Order-No.: see table

| Series | Face spanner wrench |
|--------|---------------------|
| 15     | Order-No. SLS/0015  |
| 30     | Order-No. SLS/0030  |
| 70     | Order-No. SLS/0070  |

# optional

#### Full disengagement



## MODEL ST

#### **TORQUE MODULE**

 $B_2$ 



Material: High-strength, nitro-carburized steel

**Design:** Two part assembly for installation into prefabricated coupling components.

Part 1: Engagement receptacle Part 2: Self-contained, spring loaded plunger module

The spring tension is adjustable in the field.

The set force is visible on the adjustment scale.

Temperature range: -30 to +120° C

**Service life:** Infinite life and maintenance free when operated within the technical specifications.

Fit tolerance: For mounting of the ST torque modules, an H7 bore tolerance is required.

Re-engagement: The modules are re-engaged by applying an axial force to the plunger when modules are aligned with engagement receptacles.

|                                                               |           |                       |                     | Series               |                       |
|---------------------------------------------------------------|-----------|-----------------------|---------------------|----------------------|-----------------------|
| WIUDEL ST                                                     |           |                       | 15                  | 30                   | 70                    |
|                                                               |           | 1                     | 1-4                 | 5-10                 | 8-20                  |
| Tangential force (KN)<br>Adjustment range available from - to | (ranges)  | 2                     | 2-8                 | 10-20                | 15-40                 |
|                                                               | (1411900) | 3                     | 6-20                | 20-35                | 30-70                 |
| Centering diameter torque module g6                           | (mm)      | A <sub>1</sub>        | 40                  | 70                   | 90                    |
| Centering diameter engagement receptacle g6                   | (mm)      | A <sub>2</sub>        | 24                  | 34                   | 44                    |
| Centering length torque module                                | (mm)      | Β <sub>1</sub>        | 20                  | 35                   | 45                    |
| Centering length engagement receptacle                        | (mm)      | B <sub>2</sub>        | 14                  | 22                   | 30                    |
| Overall length                                                | (mm)      | С                     | 70                  | 103                  | 135                   |
| Outside diameter                                              | (mm)      | <b>D</b> <sub>1</sub> | 59                  | 100                  | 129                   |
| Bolt circle diameter                                          | (mm)      | D <sub>2</sub>        | 50                  | 86                   | 110                   |
| Diameter plunger                                              | (mm)      | D <sub>3</sub>        | 16                  | 28                   | 35                    |
| Diameter adjustment nut                                       | (mm)      | $D_4$                 | 44                  | 75                   | 92                    |
| Screw / tightening torque ISO 4762                            | (mm)      | E,                    | 6 x M5 x 16 / 10 Nm | 6 x M8 x 25 / 40 Nm  | 6 x M12 x 35 / 120 Nm |
| Screw / tightening torque ISO 4762                            | (mm)      | E <sub>2</sub>        | 1x M4 x 14 / 4.5 Nm | 1x M6 x 20 / 15.5 Nm | 1x M8 x 25 / 40 Nm    |
| Flange thickness                                              | (mm)      |                       | 7                   | 12                   | 16                    |
| Distance                                                      | (mm)      | G                     | 5                   | 8                    | 10                    |
| Actuation path                                                | (mm)      | Н                     | 4                   | 7.5                  | 10                    |
| Distance                                                      | (mm)      | I                     | 2                   | 3                    | 4                     |
| Radius                                                        | (mm)      | J                     | 110                 | 200                  | 250                   |
| Inner thread                                                  | (mm)      | К                     | M8 x 15             | M10 x 25             | M16 x 30              |
| Distance ± 0,1                                                | (mm)      | L                     | 36                  | 60                   | 79                    |
| Weight                                                        | (kg)      |                       | 0.65                | 2.7                  | 6                     |

axial spring force  $\approx$  tangential force/1.4



## MODEL ST

#### Ordering example

| ST / 30 / 2 / 12 /                  | ХХ |
|-------------------------------------|----|
|                                     |    |
| Model                               |    |
| Series                              |    |
| Adjustment range 1/2/3              |    |
| Tangential force (KN)               |    |
| Non-standard (e.g. stainless steel) |    |

#### Maintenance

The ST modules are lubricated and sealed for life. Routine maintenance is not required. While the modules have an extreme service life, they should be periodically checked to ensure proper functionality.

#### **Mounting instructions ST**

#### Mounting engagement receptacle

Note: Measurements L1 and L2 must be checked prior to installing the torque modules.



#### **Dismounting of engagement receptacle**

After loosening the mounting screw E2, the engagement receptacle can be dismounted with a removal tool.



| Mounting | OŤ | torque | module |  |
|----------|----|--------|--------|--|



| MODEL CT          |                     |                    | Series             |                     |  |  |  |  |
|-------------------|---------------------|--------------------|--------------------|---------------------|--|--|--|--|
| WIUDEL ST         |                     | 15                 | 30                 | 70                  |  |  |  |  |
| Screws            | E <sub>1</sub>      | 6 x M5 x 16 (12.9) | 6 x M8 x 25 (12.9) | 6 x M12 x 35 (12.9) |  |  |  |  |
| Tightening torque |                     | 10 Nm              | 40 Nm              | 120 Nm              |  |  |  |  |
| Screws            | E <sub>2</sub>      | 1 x M4 x 12        | 1 x M6 x 20        | 1 x M8 x 25         |  |  |  |  |
| Tightening torque |                     | 4.5 Nm             | 15.5 Nm            | 38 Nm               |  |  |  |  |
| Screws            | $E_3$               | 4 x M4 x 14        | 4 x M4 x 16        | 4 x M5 x 20         |  |  |  |  |
| Tightening torque |                     | 4.5 Nm             | 5 Nm               | 10 Nm               |  |  |  |  |
| Thread            | $E_4$               | M5                 | M8                 | M10                 |  |  |  |  |
| Actuation path    | Н                   | 4 mm               | 7.5 mm             | 10 mm               |  |  |  |  |
| Restoring force   | F                   | max. 2 KN          | max. 4 KN          | max. 6 KN           |  |  |  |  |
| Fit length        | L <sub>1</sub> ±0.1 | 36                 | 60                 | 79                  |  |  |  |  |
| Depth measurement | L <sub>2</sub> ±0.1 | 10                 | 20.5               | 29                  |  |  |  |  |
| Gauge ball        | ØG                  | 16                 | 25                 | 30                  |  |  |  |  |

#### According to disengagement torque

| As a rule, torque limiters are rated<br>according to the required disengagement<br>torque, which must be greater than the<br>necessary operating torque.<br>The disengagement torque is determined<br>according to the drive specifications.<br>The following formula provides a basis for<br>calculation: | $\label{eq:TAR} \begin{split} \hline T_{AR} & \geqq K \cdot T_{max} \ (Nm) \end{split}$<br>K = 1.3 uniform load<br>K = 1.5 light, non-uniform load<br>K = 1.8 heavy, non-uniform load<br>or $T_{Drive} & \ge 9550 \cdot \frac{P_{Drive}}{n} \ (Nm) \end{split}$ | T <sub>AR</sub><br>K<br>T <sub>max</sub>                                         | <ul> <li>Disengagement torque of coupling</li> <li>service factor</li> <li>peak operating torque</li> <li>Nominal torque of drive</li> <li>Drive power</li> <li>Drive speed</li> </ul>                                   | g (Nm)<br>(Nm)<br>(Nm)<br>(kW)<br>(min <sup>-1</sup> )                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| According to acceleration torque (s                                                                                                                                                                                                                                                                        | tart-up at no load)                                                                                                                                                                                                                                             |                                                                                  |                                                                                                                                                                                                                          |                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                       | $T_{AR} \ge \alpha \cdot J_L \ge \frac{J_L}{J_A + J_L} \cdot T_{AS} \cdot S_A \text{ (Nm}$                                                                                                                                                                      | ) T <sub>AR</sub><br>α<br>t                                                      | = Disengagement torque of coupling<br>= Angular acceleration<br>$\alpha = \frac{\omega}{t} = \frac{\pi \cdot n}{t \cdot 30}$<br>= Acceleration time<br>= Angular velocity                                                | $(Nm)$ $\frac{1}{s^2}$ (sec.) (1/s)                                                                |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 | n<br>J <sub>L</sub><br>J <sub>A</sub><br>T <sub>AS</sub>                         | <ul> <li>Drive speed</li> <li>Moment of inertia on load side</li> <li>Moment of inertia on drive side</li> <li>Peak torque of motor</li> </ul>                                                                           | (min <sup>-1</sup> )<br>(kgm <sup>2</sup> )<br>(kgm <sup>2</sup> )<br>(Nm)                         |
| According to acceleration and load                                                                                                                                                                                                                                                                         | torque (start-up with load)                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                          |                                                                                                    |
| $T_{AR} \ge \alpha \cdot J_L + T_{AN} \ge \left[\frac{J_L}{J_A + J_L} \cdot (T_A)\right]$                                                                                                                                                                                                                  | $_{NS} - T_{AN}) + T_{AN} \cdot S_A$ (Nm)                                                                                                                                                                                                                       | $T_{AR} lpha$                                                                    | = Disengagement torque of coupling<br>= Angular acceleration<br>$\alpha = \frac{\omega}{t} = \frac{\pi \cdot n}{t \cdot 30}$                                                                                             | g (Nm)<br><u>1</u><br>s <sup>2</sup>                                                               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 | t<br>ω<br>J <sub>L</sub><br>T <sub>AN</sub><br>J <sub>A</sub><br>T <sub>AS</sub> | <ul> <li>Acceleration time</li> <li>Angular velocity</li> <li>Drive speed</li> <li>Moment of inertia on load side</li> <li>Load torque</li> <li>Moment of inertia on drive side</li> <li>Peak torque of motor</li> </ul> | (s)<br>(1/s)<br>(min <sup>-1</sup> )<br>(kgm <sup>2</sup> )<br>(Nm)<br>(kgm <sup>2</sup> )<br>(Nm) |
| According to number of torque mod                                                                                                                                                                                                                                                                          | ules                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                                                                                                                          |                                                                                                    |
| $T_{AR} = S \cdot F \cdot r$                                                                                                                                                                                                                                                                               | Badius to torque<br>module                                                                                                                                                                                                                                      | T <sub>AR</sub><br>S<br>F<br>r<br>Motor shaft                                    | <ul> <li>Disengagement torque of coupling</li> <li>Number of torque modules</li> <li>Tangential force</li> <li>Radius to torque module</li> </ul>                                                                        | g (Nm)<br>(KN)<br>(m)                                                                              |



#### According to linear feed force

#### Spindle drive

$$T_{AN} = \frac{s \cdot F_V}{2000 \cdot \pi \cdot \eta} \quad (Nm)$$

Timing belt drive

$$T_{AN} = \frac{d_0 \cdot F_V}{2000} \quad (Nm)$$

| AN             | = | Load torque                        | (Nm) |
|----------------|---|------------------------------------|------|
| S              | = | Pitch                              | (mm) |
| v              | = | Linear feed force                  | (N)  |
| 1              | = | Efficiency factor                  |      |
|                |   |                                    |      |
| AN             | = | Load torque                        | (Nm) |
| 1 <sub>0</sub> | = | Gear diameter (timing belt pulley) | (mm) |
| V              | = | Linear feed force                  | (N)  |

#### According to resonant frequency

The resonant frequency of the coupling must be higher or lower than the frequency of the machine.

The following calculation is used for a 2 mass system:

$$f_{e} = \frac{1}{2 \cdot \pi} \sqrt{C_{T} \times \frac{J_{Machine} + J_{Mot}}{J_{Machine} \cdot J_{Mot}} (Hz)}$$

| $C_{T}$             | = | Torsional stiffness of coupling                                                      | (Nm/rad) |
|---------------------|---|--------------------------------------------------------------------------------------|----------|
| J <sub>Masch.</sub> | = | Moment of inertia total machine<br>(Spindle + carriage + components + coupling half) | (kgm²)   |
| J <sub>Mot.</sub>   | = | Moment of inertia motor<br>(Rotor + coupling half)                                   | (kgm²)   |
| f                   | = | Resonant frequency of 2 mass system                                                  | (Hz)     |

#### Specifications of elastomer jaw coupling ST2

| Series                        |                          | ST2 / 10 | ST2 / 25 | ST2 / 60 | ST2 / 160 |
|-------------------------------|--------------------------|----------|----------|----------|-----------|
| $T_{KN}$ Rated torque         | (Nm)                     | 10,000   | 15,000   | 40,000   | 80,000    |
| T <sub>Kmax</sub> Peak torque | (Nm)                     | 22,000   | 33,000   | 88,000   | 176,000   |
| Dynamic torsional stiffness   | (10 <sup>3</sup> Nm/rad) | 145      | 230      | 580      | 1000      |
| Relative damping              |                          | 1        | 1        | 1        | 1         |

#### Rating factors for elastomer jaw coupling ST2

#### Shock or load factor S<sub>A</sub>

| Drive                                                                           | Load variables of machine |     |     |  |  |  |
|---------------------------------------------------------------------------------|---------------------------|-----|-----|--|--|--|
| Drive                                                                           | G                         | М   | S   |  |  |  |
| Electric motors, turbines,<br>hydraulic motors                                  | 1.25                      | 1.6 | 2.0 |  |  |  |
| Internal combustion engines<br>≥ 4 cylinders<br>Degree of uniformity<br>≥ 1:100 | 1.5                       | 2.2 | 2.5 |  |  |  |

#### **Temperature factor S**

| Ambient<br>temperature | -40 C°<br>+30 C° | +40<br>C° | +60<br>C° | +80<br>C° | >+80 C°      |
|------------------------|------------------|-----------|-----------|-----------|--------------|
| St                     | 1.0              | 1.1       | 1.4       | 1.8       | upon request |

Start factor S<sub>z</sub>

| Start frequency<br>per hour | 30  | 60  | 120 | 240 | >240         |
|-----------------------------|-----|-----|-----|-----|--------------|
| Sz                          | 1.0 | 1.1 | 1.2 | 1.3 | upon request |

 $G = Uniform \ Ioad, \ M = Average \ Ioad, \ S = Heavy \ Ioad$ 

#### According to torque

1. Calculation of drive torque T<sub>DR</sub>

P [kW] T<sub>DB</sub> [Nm] = 9550 n [rpm]

2. Calculation of the rated torque of the coupling based on drive torque T<sub>DR</sub> considering all rating factors.

$$T_{KN} \ge T_{DR} x S_A x S x S$$

#### Selection example:

Calculation of coupling for use between an electric motor (P= 450 kW at 980 rpm) and belt conveyor.

| Uniform load present | = G  | : | S, | = | 1.25 |
|----------------------|------|---|----|---|------|
| Ambient temperature  | 40°C | : | S  | = | 1.1  |
| Start frequency      | 30/h | : | S, | = | 1.0  |
|                      |      |   |    |   |      |

450 kW  $T_{DR} = 9550 -$ = 4385 2 Nm 980 rpm

Selected coupling: ST2/10 with  $T_{KN} = 6030 \text{ Nm}$ 

#### **Classification of load by type of machine**

#### **Excavators**

- S bucket-chain excavators
- S traveling gear (caterpillar)
- M traveling gear (rails)
- M suction pumps
- S bucket wheels
- M slewing mechanisms

#### **Construction machines**

- M concrete mixers
- M road construction machines

#### **Chemical industry**

- M mixers
- G agitators (light fluids)
- M dryer drums
- G centrifuges

**Conveyor systems** 

M chain conveyors

M hoists

1)

M circular conveyors

M screw conveyors

n = speed in rpm

S conveyor machines

M band pocket conveyors

G flour bucket conveyors

M gravel bucket conveyors

P = Power of drive in kW

M steel belt conveyors

G belt conveyors (bulk materials)

#### Cranes

- S traveling gear
- S lifting gear
- M slewing mechanisms

Woodworking machines

G woodworking machines

Blowers, ventilators<sup>1</sup>

G blowers (axial/radial) P:n ≤ 0.007

M blowers (axial/radial) P:n ≤ 0.007

S blowers (axial/radial)  $P:n \le 0.007$ 

G cooling tower fans  $P:n \le 0.007$ 

M cooling tower fans  $P:n \le 0.007$ 

S cooling tower fans  $P:n \le 0.007$ 

**Generators**, converters

S generators

S extruders

M mixers

**Rubber machinery** 

S kneading mills

S rolling mills

#### **Plastics machines**

- M mixers
- M shredders

#### **Metalworking machines**

M sheet metal bending machines S plate straightening machines

- S presses
- M shears
- S stamp punches
- M machine tools, main drives

#### Food processing machines

#### G filling machines

- M kneading machines
- M sugarcane crushers
- M sugarcane cutters
- S sugarcane mills
- M sugar beet cutters
- M sugar beet washers

#### **Paper machines**

- S wood cutters
- S calenders
- S
- S

#### Pumps

- S piston pumps
- G rotary pumps
- S plunger pumps

#### Stone, clay

- S crushers
- S rotary kilns

S hammer mills S brick presses

#### **Textile machines**

- M tanning vats M willows
- M looms

#### Compressors

- S piston compressors
- M turbo-compressors

#### **Rolling mills**

- M plate turner
- M wire drawing mills
- S descaling breakers
- S cold-roll mills
- M chain drags
- M traverse drags
- M roller tables
- S pipe welding machines
- S continuous casting machines
- M roller adjust mechanisms

#### Laundry machines

M drum dryers M washing machines

### Water treatment

- M aerators
- G water screw conveyors

- wet presses suction presses
- S suction rollers
- S drying cylinders



#### **Specifications of gear coupling ST4**

| Series                        |          | ST4 / 10 | ST4 / 25 | ST4 / 60 | ST4 / 160 |
|-------------------------------|----------|----------|----------|----------|-----------|
| T <sub>KN</sub> Rated torque  | (Nm)     | 16,000   | 22,000   | 62,000   | 174,000   |
| T <sub>Kmax</sub> Peak torque | (Nm)     | 32,000   | 44,000   | 124,000  | 348,000   |
| Grease                        | (dm³)    | 0.52     | 0.8      | 1.51     | 3.29      |
| n Ref (Speed max.)            | (1/min.) | 6,050    | 5,150    | 3,600    | 3,050     |

\* only allowable at reduced torque and misalignment

#### Selection based on torque

1. Calculation of drive torque T<sub>DB</sub>.

$$T_{AN} [Nm] = 9550 \frac{P [kW]}{n [rpm]}$$

2. Calculation of the rated torque of the coupling based on drive torque  $T_{_{DR}}$  considering all rating factors (Shock or load factor  $S_{_{A'}}$ , see page 17)

$$T_{KN} \geq T_{DR} \ x \ S_A$$

#### Application graph

Max torque, max speed, and max misalignment should never occur at the same time.

Calculation of T /  $T_{KN}$  and n /  $n_{max}$  > Calculate values and enter and check in the diagram below.



#### Example: Coupling ST4/10



#### Selection example:

Calculation of a coupling for use between an electric motor (P= 1000 kW at 980 rpm) and screw conveyor ( $S_A = 1.6$ ).

$$T_{DR} = 9550 - \frac{1000 \text{ kW}}{980 \text{ rpm}} = 9744 \text{ Nm}$$

Selected coupling: ST4/10 with  $T_{KN} = 16,000 \text{ Nm}$ 

#### **Optional actuation plate**



| MODEL CT 1                | Series |     |     |              |              |
|---------------------------|--------|-----|-----|--------------|--------------|
| WUDELSII                  | 10     | 25  | 60  | 160          |              |
| Outside diameter          | А      | 278 | 328 | upon request | upon request |
| Distance                  | В      | 57  | 57  | upon request | upon request |
| Actuation plate thickness | С      | 4.5 | 4.5 | upon request | upon request |



Experience and Know-how for your special requirements.

## THE R+W-PRODUCT RANGE





TORQUE LIMITERS Series SK + ST

 $\begin{array}{l} \mbox{From 0.1}-165,\!000\mbox{ Nm},\mbox{ Bore diameters }3-290\mbox{ mm}\\ \mbox{Available as a single position, multi-position,}\\ \mbox{load holding, or full disengagement version}\\ \mbox{Single piece or press fit design} \end{array}$ 

#### BELLOWS COUPLINGS Series BK + BX

From 2 - 100,000 Nm Bore diameters 3 - 280 mm Single piece or press fit design



LINE SHAFTS Series ZA / ZAE / EZ / EZV

From 5 - 25,000 Nm Bore diameters 5 - 140 mm Available up to 6 mtr. length

#### MINIATURE BELLOWS COUPLINGS Series MK

 $\begin{array}{l} \mbox{From 0.05}-10\mbox{ Nm}\\ \mbox{Bore diameters 1}-28\mbox{ mm}\\ \mbox{Single piece or press fit design} \end{array}$ 

#### SERVOMAX® ELASTOMER COUPLINGS Series EK

From 2 – 25,000 Nm Shaft diameters 3 – 170 mm backlash free, press fit design

**ELASTOMER COUPLINGS** 







LINEAR COUPLINGS Series LK

**ECOLIGHT®** 

**Series TX 1** From 2 – 810 Nm Shaft diameters 3 – 45 mm

 $\begin{array}{l} \mbox{From 70}-2{,}000\ \mbox{N} \\ \mbox{Thread } M5-M16 \end{array}$ 

POLYAMIDE COUPLINGS MICROFLEX Series FK 1

Rated torque 1 Ncm Bore diameters 1.5 – 2 mm A065/06/12/1000

R+W America 1120 Tower Lane Bensenville, IL 60106

Phone: 630-521-9911 Fax: 630-521-0366

info@rw-america.com www.rw-america.com



ed 01-2008

TGA-ZM-05-91-00 Registration No. 40503432/2

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturer's own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.